Cobalt 4504

Automatic balunless measuring system for LAN cables

DESCRIPTION

LAN cables are more and more specified for large and wider frequency ranges. Balun based systems cannot measure more than 3 frequency decades with reasonable accuracy. The Cobalt system based on a modal decomposition mathematical algorithm supports the development of new cables (complete tests at the lab) and simplifies operator's difficult job within systematic testing operations during production which are essential to achieve reliable results.
Cobalt can measure very easily patch cords or coaxial cables. Using a simple interface and introducing a de-embedding software correction, it doesn't need frequent and time-consuming calibration routines. It can provide not only the standard parameters as Next and RL, but also many other cable and individual wire parameters required for development of new cable designs as well as for detailed troubleshooting and quality analysis.

KEY FEATURES

- Multiple uses
- Quality inspection, with very high accuracy
- Development, with individual values per wire
- Data cables
- Patch cords with RJ45 connectors (standard) or others
- High-Tech
- Balunless technology (modal decomposition mathematical algorithm)
- Executive HF switches using MIL standardized relays (min 2'000'000 cycles)
- Performant
- More than 170 parameters (including TCL measurement with integrated common mode)
- Performs all electric tests on cables responding to major standards
- Go over the limits

Very broad frequency range ($<4 \mathrm{GHz}$) for cat 8 and higher

- Full dynamic range available
- Short cable length (10m)
- Add-on
- EMC parameters (TI, AS, AC)
- Alien Crosstalk

TECHNICAL SPECIFICATIONS

Parameters	More than 170 parameters available (Transmission, Reflection, NEXT, FEXT, TCL...) Note: Cobalt offers complete S-parameter capabilities (Differential-, Common- and Mixed Mode Parameters)
Standards	Performs all electrical tests on cables responding to: - ANSI/TIA-568-C.2 for Category 3, 5e, 6 and 6A - ANSI/TIA-568-C.2-1 for Category 8 - IEC 61156-5/-6 for Category 5e, 6, 6A, 7 and 7A - IEC 61156-7/-8 for cables up to 1200MHz - IEC 61156-9/-10 for Category 8.1 and 8.2
Measuring length	Cable samples from 10m up to 100m

ACCURACY

	$\begin{gathered} 100 \mathrm{kHz}- \\ 10 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 10 \mathrm{MHz}- \\ & 100 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 100 \mathrm{MHz}- \\ & 200 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 200 \mathrm{MHz} \text { - } \\ 400 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 400 \mathrm{MHz}- \\ 750 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 750 \mathrm{MHz}- \\ 1.5 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 1.5 \mathrm{GHz}- \\ 3 \mathrm{GHz} \end{gathered}$	3 GHz - 4.5 GHz (typical)
Attenuation (corrected at $20^{\circ} \mathrm{C}$)								
-80 to -50 dB	$\pm 1.3 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 1.7 \mathrm{~dB}$	$\pm 1.9 \mathrm{~dB}$	$\pm 3 \mathrm{~dB}$	$\pm 4 \mathrm{~dB}$	$\pm 6 \mathrm{~dB}$	$\pm 6 \mathrm{~dB}$
-50 to -25 dB	$\pm 0.5 \mathrm{~dB}$	$\pm 0.6 \mathrm{~dB}$	$\pm 0.6 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 0.9 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 3 \mathrm{~dB}$
-25 to -10 dB	$\pm 0.2 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 1.3 \mathrm{~dB}$	$\pm 1.7 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$
-10 to 0 dB	$\pm 0.2 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 1.3 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$
Near-End Crosstalk NEXT \& Far-End Crosstalk FEXT								
-90 to -60 dB	$\pm 2 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$	$\pm 4 \mathrm{~dB}$	$\pm 6 \mathrm{~dB}$	$\pm 8 \mathrm{~dB}$	$\pm 8 \mathrm{~dB}$
-60 to -30 dB	$\pm 1.6 \mathrm{~dB}$	$\pm 1.4 \mathrm{~dB}$	$\pm 1.4 \mathrm{~dB}$	$\pm 1.6 \mathrm{~dB}$	$\pm 1.8 \mathrm{~dB}$	$\pm 4 \mathrm{~dB}$	$\pm 6 \mathrm{~dB}$	$\pm 6 \mathrm{~dB}$
-30 to -10 dB	$\pm 0.5 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 1 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 3 \mathrm{~dB}$	$\pm 3 \mathrm{~dB}$
Impedance								
70 $\mathbf{\Omega - 9 0 \Omega}$	$\pm 1 \Omega$	$\pm 1.5 \Omega$	$\pm 2 \Omega$	$\pm 2 \Omega$	$\pm 3 \Omega$	$\pm 4.5 \Omega$	$\pm 6 \Omega$	$\pm 6 \Omega$
90 Ω-110 Ω	$\pm 0.75 \Omega$	$\pm 1 \Omega$	$\pm 1.5 \Omega$	$\pm 1.5 \Omega$	$\pm 2 \Omega$	$\pm 4 \Omega$	$\pm 5 \Omega$	$\pm 5 \Omega$
110 Ω-130 Ω	$\pm 1 \Omega$	$\pm 1.5 \Omega$	$\pm 2 \Omega$	$\pm 2 \Omega$	$\pm 3 \Omega$	$\pm 4.5 \Omega$	$\pm 6 \Omega$	$\pm 6 \Omega$

REQUIRED COMPONENTS

The system must be completed with:

- Vector Network Analyzer (VNA). This can be provided by AESA or by the customer.

AVAILABLE OPTIONS

The equipment can be completed with:

- Low freqeuncy parameters measuring unit
- Coaxial cable measurement (50Ω or $50+75 \Omega$)
- Switch for options
- EMC parameters
(Transfer Impedance, Screening/Coupling Attenuation)
- Connecting frame for connectors (e.g. RJ45)
- 9000 Low Frequency standards
- 9800 High Frequency standards
- Spare parts

KEY BENEFITS

USER-FRIENDLY

- Fast measurements
- No special HF or LF knowledge required
- OptiTest software is multilingual
- Direct results without post calculation
- Test order library

ISO 17025 ACCREDITED

ACCURATE AND REPEATABLE

- The equipment is checked against traceable calibration standards according to ISO/IEC 17025
- Perfect reproducibility
- The risk of human error is reduced to its strict minimum
- Calibration managed/saved by computer

SMART

- All data (results \& conditions) are saved in the PC
- Reports and evaluations can be printed
- Data can be exported (PDF, TXT or XLS files)

Overview

SYSTEM

No balun so individual values per wire available and not only pair. Accept wire diameters between 0.3 and 1.0 mm (28AWG to 18AWG).
Full two ports calibration (Thru-Open-Short-Load) for high accuracy measurement.
No movable parts for maximum measurement speed and reliability.
Robust mechanical design studied to facilitate maintenance and servicing operations.

LOW FREQUENCY PARAMETERS (Optional)

The low frequency parameters feature is designed to measure pairs or quads.
The resistance is measured at 4 points (Kelvin bridge)
The capacitance can be measured at different frequencies in order to accommodate different cable lengths (Please refer to our application note 'Length Restrictions in Cable Testing').
The feature provides self-calibration.

Measured parameters
Conductor Resistance
Loop Resistance
Resistance unbalanced
Capacitance
Capacitance unbalanced
Capacitance unbalanced to ground

Calculated parameters at (from 100 Hz to 10 kHz)

Attenuation
Characteristic Impedance

Statistical parameters

Maximum and minimum measured values
Absolute minimum measured value
Average value
Quadratic average
Standard deviation and more ...

Upper quality factor
Lower quality factor
RC product
Standard deviation RC
Variance

HIGH FREQUENCY PARAMETERS

The high frequency parameters are measured as pairs only (1 quad = 2 pairs).
The measurement can be done according to a configurable curve or predefined fixed points.
2 connecting frames allow to connect both ends of the cable for an automatic measurement of all parameters.
A complete calibration is saved in the system allowing to change specifications without having to perform a new calibration.

Available HF parameters:

Transmission/Reflection	- Reflection Differential Mode (each parameter is available at near and/or far end): Return Loss dd, characteristic impedance, S11, Fitted impedance, SRL - Transmission Differential Mode (each parameter is available for forward and reverse measurement): Attenuation (Insertion Loss), S21, S21 phase, Phase delay, phase delay velocity, Group delay, Delay skew... - Reflection Common Mode (each parameter is available at near and/or far end): Return Loss cc, characteristic impedance, S11, Fitted impedance, SRL - Transmission Common Mode (each parameter is available for forward and reverse measurement): Insertion Loss, S21, S21 phase, Phase delay, phase delay velocity, Group delay, Delay skew... - Conversion Loss (each parameter is available for forward and reverse measurement): LCLdc, LCTLdc, TCLcd, TCTLcd, ELTCTLcd - Single Ended Reflection (each parameter is available at near and/or far end and for wire a and/or b): Characteristic impedance, S11, Fitted impedance, SRL - Single Ended Transmission (each parameter is available for forward and reverse measurement and for wire a and/or b): Attenuation (Insertion Loss), S21, Phase, Phase delay, In Pair Skew... - Single Ended NEXT: S31, S13, S42, S24 - Single Ended FEXT: S41, S14, S32, S23
Near-NEXT	- NEXT Differential Mode: Nextdd, PSNextdd, ACR-Ndd, PSACR-Ndd - NEXT Common/Differential Mode: Nextcd - NEXT Differential/Common Mode: Nextdc - NEXT - Common Mode: Nextcc
Far-NEXT	- Same as Near-NEXT but measured at the far end
FEXT	- FEXT Differential Mode: Fextdd, PSFextdd, Elfextdd, PSEIFextdd, ACR-Fdd, PSACRFdd - FEXT Common/Differential Mode: Fextcd - FEXT Differential/Common Mode: Fextdc - FEXT Common Mode: Fextcc

Statistical parameters

Maximum and minimum measured values
Pair of worst case and more ...

Worst case

Frequency of worst case

COBALT 4504

STANDARDS

		©	8		io	웅	0	\|o	$\overline{0}$	ω^{∞}	\|o	io	\|	\mid	ios	\|o	ios	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}\right.$		$\stackrel{y}{c}$	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{0}{0} \\ & \stackrel{y}{0} \end{aligned}\right.$	\|	$\widetilde{0}$	$\begin{aligned} & \infty \\ & \hline 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\pi}{\ddot{0}}$	$\begin{gathered} \infty \\ \underset{\sim}{0} \\ \underset{\sim}{c} \end{gathered}$	$\left\lvert\, \begin{gathered} \infty \\ \hline \\ \hline \end{gathered}\right.$		$\begin{aligned} & \stackrel{\substack{0 \\ \hline}}{0} \end{aligned}$	©	$\begin{aligned} & \stackrel{\infty}{\overleftarrow{0}} \\ & \sim \end{aligned}$	\％
		山	$\left\lvert\, \begin{aligned} & \frac{8}{0} \\ & \stackrel{x}{x} \\ & \underset{4}{2} \end{aligned}\right.$	$\begin{aligned} & \text { 旁 } \\ & \underline{\underline{0}} \end{aligned}$	$\begin{aligned} & \frac{8}{0} \\ & \dot{x} \\ & \stackrel{y}{z} \end{aligned}$		$\left\lvert\, \begin{aligned} & \frac{0}{\square} \\ & \frac{1}{4} \\ & \stackrel{y}{z} \end{aligned}\right.$	\|				$$	$\left\lvert\, \begin{aligned} & 00 \\ & \frac{0}{0} \\ & \stackrel{y}{x} \\ & \stackrel{y}{z} \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 00 \\ & 0 \stackrel{0}{0} \\ & \frac{1}{x} \\ & \stackrel{1}{z} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{4} \\ & \stackrel{y}{2} \end{aligned}\right.$	\|ol	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{x} \\ \underset{\sim}{u} \end{gathered}\right.$	\|杀		$\begin{array}{\|l\|l} 0 \\ \substack{0 \\ 0 \\ 0 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline} \\ \hline \end{array}$			$\left\lvert\, \begin{aligned} & \infty \\ & \frac{0}{0} \\ & \frac{2}{x} \\ & \mathbf{z} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \hline 0 \\ & \hline 0 \\ & \hline \end{aligned}\right.$	$\text { \| } \begin{aligned} & \infty \\ & \stackrel{y}{4} \\ & \underset{u}{x} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{array}{\|c} \stackrel{0}{4} \\ \stackrel{y}{4} \\ \text { u } \end{array}\right.$		$\left\lvert\, \begin{gathered} \stackrel{\circ}{O} \\ \underset{A}{0} \\ \hline \end{gathered}\right.$		$\left\lvert\, \begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{4} \\ & \stackrel{y}{2} \\ & \underset{z}{2} \end{aligned}\right.$	$\begin{aligned} & \stackrel{\infty}{仓} \\ & \stackrel{0}{x} \\ & \stackrel{y}{x} \end{aligned}$	－
$\stackrel{N}{\mathrm{D}}$	$\left\lvert\, \begin{aligned} & \hat{N} \\ & \overline{0} \\ & \end{aligned}\right.$	$\stackrel{0}{\circ}$	$\begin{aligned} & 1 \\ & \hline \mathbf{0} \\ & 0 \\ & 0 \end{aligned}$	$\frac{8}{0}$	唇	$\left\lvert\, \begin{aligned} & \mathbf{0} \\ & \hline 80 \\ & \hline 0 \end{aligned}\right.$	$\frac{\square}{\circ}$	$\begin{array}{\|c\|c\|} \hline \mathbf{\infty} \\ \mathbf{o} \\ \hline \mathbf{\infty} \end{array}$	$\begin{array}{\|l\|} \hline \hat{0} \\ \stackrel{\circ}{\circ} \\ \hline \end{array}$	ion	$\begin{array}{\|c} \hat{0} \\ \frac{0}{\infty} \\ \hline \end{array}$	8	资	$\left\lvert\, \begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}\right.$	$\begin{array}{\|l} \hat{N} \\ \text { od } \\ 0 \end{array}$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}\right.$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{\mathrm{O}} \\ \stackrel{\rightharpoonup}{\circ} \end{array}$	$\left\lvert\, \begin{aligned} & \hat{\mathrm{y}} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \hat{\mathbf{0}} \\ & \stackrel{\rightharpoonup}{0} \\ & \dot{心} \end{aligned}\right.$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{8} \\ \stackrel{\rightharpoonup}{\circ} \end{array}$		$\begin{aligned} & \frac{8}{8} \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \hat{\rightharpoonup} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{c} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{array}{\|c} \stackrel{N}{\overline{0}} \\ \dot{\sim} \end{array}$		$\begin{array}{\|c} \substack{0 \\ 0 \\ \hline \\ \hline} \end{array}$		$\left\lvert\, \begin{aligned} & \text { N్ర్ర } \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	N 	\％
	$\begin{array}{\|l\|} \stackrel{\rightharpoonup}{\hat{O}} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{4} \\ \hline \end{array}$	山	$\left\lvert\, \begin{aligned} & \hat{0} \\ & \underline{0} \\ & \hline \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \frac{10}{0} \\ & \vdots \\ & \text { x } \\ & \text { 己 } \end{aligned}\right.$				$\left\lvert\, \begin{aligned} & \hat{N} \\ & \frac{0}{x} \\ & \underset{\sim}{u} \\ & \hline \end{aligned}\right.$	\|		$\begin{array}{\|l\|l\|} \hline \hat{y} \\ \hline \frac{0}{x} \\ \hline \underset{4}{4} \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \sqrt{0} \\ & \stackrel{0}{6} \\ & \stackrel{x}{x} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{array}{\|l\|l} \hat{0} \\ \stackrel{0}{2} \\ \frac{1}{x} \\ \text { Z } \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \hat{N} \\ & \stackrel{0}{U} \\ & \underset{U}{0} \end{aligned}\right.$						$\left\lvert\, \frac{\mathrm{L}}{2}\right.$	$\begin{array}{\|l\|l} \hline \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{x} \\ \stackrel{\rightharpoonup}{z} \end{array}$	$\left\lvert\, \begin{aligned} & \hat{N} \\ & \underset{O}{0} \\ & \mathbf{U} \\ & \hline 1 \end{aligned}\right.$		$\begin{array}{\|l\|l} \hline \stackrel{\rightharpoonup}{U} \\ \stackrel{U}{x} \\ \stackrel{\rightharpoonup}{4} \\ \hline \end{array}$		\|⿳⺈⿴囗十灬⿱㇒日勺心	$\left\lvert\, \begin{aligned} & \text { 庶 } \\ & \stackrel{\rightharpoonup}{x} \\ & \underset{\sim}{4} \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \hat{0} \\ & \stackrel{0}{4} \\ & \stackrel{1}{x} \\ & \stackrel{1}{2} \end{aligned}\right.$	\hat{C} $\stackrel{y}{c}$ \vec{x}	｜r
容	$\left\lvert\, \begin{gathered} 0 \\ \frac{0}{0} \\ \infty \end{gathered}\right.$	©	$\begin{array}{\|l\|l} \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$	©		$\left\lvert\, \begin{aligned} & \text { \& } \\ & \hline \mathbf{8} \\ & \hline 0 \end{aligned}\right.$	蓉		$\begin{aligned} & \mathrm{O} \\ & 0 \end{aligned}$	io	$\begin{array}{\|l\|l} \hline \stackrel{y}{0} \\ \stackrel{8}{\circ} \end{array}$	落	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\left\lvert\, \begin{aligned} & 08 \\ & \hline 08 \\ & \hline 0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}\right.$		0	©		$\left\lvert\, \begin{aligned} & \frac{8}{o} \\ & \text { i } \\ & 0 \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \circ \\ & \hline \mathbf{\circ} \\ & \hline 0 \end{aligned}\right.$	$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \otimes 0 \\ & \hline 0 \\ & \hline 0 \\ & 0 \end{aligned}\right.$	$\begin{array}{\|l} \hline 0 \\ \hline 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{\|c} \hline \stackrel{y}{\mathrm{O}} \\ \text { on } \end{array}$	$\begin{array}{\|l\|l} \hline 0 \\ \hline \end{array}$			$\left\lvert\, \begin{aligned} & \circ \\ & \hline 0 \\ & \hline \\ & \hline \end{aligned}\right.$	$\begin{array}{\|l} \hline 0 \\ \hline 0 \\ 0 \\ 0 \end{array}$	\＃
	\|	$\stackrel{9}{=}$		\|단	离	$\left\lvert\, \begin{aligned} & \ddot{8} \\ & \frac{0}{0} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}\right.$	$\begin{array}{\|l\|l} \frac{0}{0} \\ \frac{1}{2} \\ \hline \mathbf{Z} \\ \hline \end{array}$			$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \\ & \hline 1 \end{aligned}$		$$	$\left\lvert\, \begin{aligned} & \frac{8}{0} \\ & \stackrel{y}{x} \\ & \stackrel{y}{2} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 00 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}\right.$	$\frac{\times}{\underset{Z}{z}}$			运	$\begin{array}{\|l\|l} \hline 0 \\ \hline 0 \\ 0 \\ \dot{x} \\ \underset{\sim}{4} \\ \hline \end{array}$		$\mid \dot{\text { ü }}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}\right.$	$\begin{array}{\|l\|l} 0 \\ \frac{0}{0} \\ \dot{0} \\ \frac{1}{2} \\ \underset{Z}{2} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{0}{0} \\ \dot{0} \\ \dot{x} \\ \hline \mathbf{~} \\ \hline \end{array}$		0			$$	$\left\lvert\, \begin{aligned} & \ddot{0} \\ & \frac{0}{4} \\ & \stackrel{y}{x} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \underset{\sim}{z} \\ & \underset{z}{2} \end{aligned}\right.$	¢
$\stackrel{n}{0}$	$\frac{\overline{7}}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	$\begin{array}{\|l\|l} \hline \stackrel{0}{2} \\ \text { 会 } \end{array}$	$\begin{aligned} & \mathrm{B} \\ & 0 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|l} \hline \stackrel{0}{0} \\ \hline 08 \\ \hline 0 \end{array}$	$\frac{0}{0}$		$\begin{array}{\|l\|} \hline \frac{n}{0} \\ \hline 8 \\ \hline \end{array}$	io	$\begin{array}{\|c} \hline \stackrel{y}{0} \\ \substack{0 \\ \hline} \end{array}$	$\begin{aligned} & \mathrm{d} \\ & \hline 0 \end{aligned}$	$\begin{array}{\|l\|l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		10	$\begin{array}{\|c} \hline \infty \\ 0 \\ 0 \\ \hline 0 \\ \hline \end{array}$		ic	$\begin{aligned} & \stackrel{\leftrightarrow}{\mathrm{m}} \\ & \mathbf{0} \\ & \mathrm{e} \end{aligned}$		io	$\left\lvert\, \begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \\ & 0 \end{aligned}\right.$	$\begin{array}{\|c} \hline \stackrel{n}{0} \\ 0 \\ 0 \\ 0 \end{array}$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}\right.$	$\begin{array}{\|c} \hline \stackrel{n}{0} \\ \stackrel{0}{0} \\ 0 \end{array}$		$\begin{array}{\|l\|l} \substack{0 \\ 0 \\ 0 \\ 0} \\ \hline \end{array}$		$\begin{aligned} & \text { U⿸\zh14巳寸} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			合
	$\stackrel{\rightharpoonup}{\underline{0}}$	$\left\lvert\, \begin{aligned} & \frac{0}{x} \\ & \underset{u}{2} \end{aligned}\right.$	$\begin{array}{\|l\|l} \stackrel{0}{x} \\ \underset{u}{4} \\ \hline \end{array}$	\|ㅆㅆㄴ	$\frac{\stackrel{\rightharpoonup}{x}}{x}$	$\begin{array}{\|l\|l} \hline \frac{0}{0} \\ \hline \mathbf{x} \\ \text { 岂 } \\ \hline \end{array}$	$\frac{\times \times}{\frac{x}{2}}$	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{0}{x} \\ & \dot{x} \\ & \underset{z}{2} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \frac{0}{0} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{1}{0} \end{gathered}\right.$	$\left\lvert\, \begin{array}{\|c} \frac{8}{0} \\ \frac{x}{4} \\ \hline \underset{4}{ } \end{array}\right.$			$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{x} \\ & \stackrel{y}{z} \end{aligned}\right.$	$\mid \underset{\text { \| }}{\text { ® }}$	$\begin{array}{\|l\|l} \frac{0}{0} \\ \frac{x}{x} \\ \stackrel{y}{z} \\ \hline \end{array}$		\|눈			$\left\lvert\, \begin{aligned} & \stackrel{n}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}\right.$		$\left\lvert\, \begin{array}{\|c} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{x} \\ \stackrel{y}{z} \end{array}\right.$		$\left\lvert\, \begin{aligned} & \stackrel{\infty}{U} \\ & \underset{y}{\mid} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \stackrel{\sim}{0} \\ \underset{\sim}{0} \\ \underset{\sim}{x} \end{gathered}\right.$		$\begin{array}{\|l\|l} \hline \stackrel{y}{4} \\ \stackrel{\rightharpoonup}{4} \\ \stackrel{y}{4} \\ \underset{\sim}{4} \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \text { 苞 } \\ & \underline{3} \\ & \underset{\sim}{c} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & \stackrel{0}{x} \\ & \stackrel{y}{z} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \text { no } \\ & 0 \\ & \dot{0} \\ & \dot{x} \\ & \underset{z}{2} \end{aligned}$	｜r
$\begin{aligned} & \pm \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\left\lvert\, \begin{aligned} & \frac{7}{0} \\ & \frac{0}{\infty} \end{aligned}\right.$	뭉		$\frac{8}{0}$	若	$\begin{aligned} & \hline \text { d } \\ & \hline \mathbf{0} \\ & 0 \end{aligned}$	若	$\begin{array}{\|l\|l} \hline \stackrel{0}{0} \\ \text { on } \\ \hline \end{array}$	$\left\lvert\, \begin{array}{r} \overline{\mathrm{B}} \\ \hline 0 \end{array}\right.$	$\stackrel{8}{0}$	\|苞	落	\|荷	$\frac{80}{\circ 8}$	$\stackrel{0}{0}$	\|啝	$\mid \stackrel{\overline{\mathrm{O}}}{\mathrm{i}}$	0	$\left\lvert\, \begin{aligned} & \text { H } \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}\right.$			$\begin{array}{r} \circ \\ \hline 0 \\ 0 \\ \hline 0 \end{array}$	$\left\lvert\, \begin{aligned} & \text { N } \\ & \frac{0}{0} \\ & 0 \end{aligned}\right.$	$\begin{array}{\|l\|l} \hline \\ \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \dot{\rightharpoonup} \\ & \hline \\ & \dot{心} \end{aligned}\right.$		$\begin{array}{\|l} \hline \\ \hline \\ \hline \\ 0 \\ 0 \end{array}$	倍	$\begin{aligned} & \text { t } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	苋	$\begin{aligned} & \text { N} \\ & \stackrel{U}{心} \end{aligned}$	袌
		离	\|e		茨	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{x} \\ & \underset{u}{4} \end{aligned}\right.$	$\underset{~ \mid ~}{\text { 区 }}$	$\stackrel{\stackrel{0}{0}}{\underline{1}}$	$\begin{array}{\|l} \stackrel{\rightharpoonup}{0} \\ \dot{x} \\ \stackrel{u}{z} \end{array}$	$\begin{array}{\|c} \frac{8}{0} \\ \frac{1}{x} \\ \stackrel{y}{2} \end{array}$			$\begin{array}{\|l} \stackrel{\circ}{0} \\ \underset{u}{x} \\ \hline \end{array}$		$\mid \stackrel{\underset{4}{\stackrel{~}{4}}}{ }$	\|ly	$\left\lvert\, \begin{aligned} & \frac{\rightharpoonup}{0} \\ & \frac{0}{x} \\ & \stackrel{y}{z} \end{aligned}\right.$	$\mid \stackrel{\boxed{4}}{\underset{\text { z }}{2}}$	$\begin{array}{\|l\|l} \hline \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \underset{Z}{2} \\ \hline \end{array}$	$\begin{aligned} & \frac{G}{U} \\ & \frac{0}{0} \\ & 0 \end{aligned}$	\|단			\|若		$\stackrel{\stackrel{⿺}{\underset{\sim}{2}}}{\substack{2}}$		$\left\lvert\, \begin{aligned} & \text { 热 } \\ & \stackrel{y}{x} \\ & \hline \end{aligned}\right.$	\|눈			－
$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \frac{m}{0} \\ & \frac{0}{\infty} \end{aligned}\right.$	$\stackrel{\rightharpoonup}{\circ}$	$\frac{\mathrm{O}}{\mathbf{0}}$	荡	$\frac{80}{08}$	$\frac{8}{0}$	$\frac{0}{0}$	$\frac{\square}{0}$	$\left\lvert\, \begin{aligned} & \frac{m}{⿺} \\ & \hline \bar{\circ} \\ & \hline \end{aligned}\right.$	荡		落	$\frac{0}{0}$	\mid	Oio	$\stackrel{0}{0}$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{o}} \\ & \mathrm{c} \end{aligned}\right.$	0	$\left\lvert\, \begin{aligned} & \text { M } \\ & \text { Non } \\ & \text { in } \end{aligned}\right.$		范	$\left\lvert\, \begin{aligned} & \ddot{\circ} \\ & \hline \mathbf{0} \\ & \stackrel{\circ}{\circ} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \frac{8}{0} 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \frac{m}{\overline{8}} \\ & \stackrel{y}{c} \end{aligned}$	呙		$\left\lvert\, \begin{aligned} & \stackrel{y}{U} \\ & \stackrel{\text { cos }}{ } \end{aligned}\right.$	18	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \hline \stackrel{N}{4} \\ & \stackrel{0}{\infty} \end{aligned}$	－
	\|둥	$\frac{\underset{\sim}{2}}{2}$	$\frac{\stackrel{\rightharpoonup}{\partial}}{\underline{x}}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \stackrel{y}{x} \\ \hline \end{array}$		\|쓴	$\underline{\underline{0}}$			$\begin{array}{\|l\|} \stackrel{N}{0} \\ \frac{0}{4} \\ \stackrel{y}{z} \\ \hline \end{array}$		$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{x} \\ & \stackrel{1}{z} \end{aligned}\right.$			$\stackrel{\rightharpoonup}{\mathrm{O}}$		$\begin{array}{\|l} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{x} \\ \stackrel{y}{Z} \\ \hline \end{array}$	$\mid \stackrel{\stackrel{\rightharpoonup}{x}}{\stackrel{\rightharpoonup}{x}}$		$\left\lvert\, \begin{aligned} & \frac{7}{0} \\ & \stackrel{y}{x} \\ & \stackrel{y}{z} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{\text { x }}{u} \end{aligned}\right.$		$\begin{array}{\|l\|l} n \\ 0 \\ 0 \\ \\ \\ \hline \end{array}$	$\left\lvert\, \begin{array}{\|l\|l} \stackrel{\rightharpoonup}{0} \\ \stackrel{y}{4} \\ \underset{u}{2} \end{array}\right.$	$\left\lvert\, \begin{aligned} & \frac{m}{U} \\ & \stackrel{\rightharpoonup}{x} \\ & \stackrel{y}{z} \end{aligned}\right.$	\|를		$\begin{array}{\|l} \stackrel{y}{0} \\ \stackrel{y}{4} \\ \stackrel{y}{z} \end{array}$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{U}} \\ & \stackrel{\rightharpoonup}{x} \\ & \underset{u}{u} \end{aligned}\right.$	$\begin{array}{\|l} \hline \stackrel{y}{0} \\ \stackrel{3}{4} \\ \frac{1}{4} \\ \hline \end{array}$		¢
늠	$\frac{N}{\frac{N}{8}}$	荡	登	㖞	皆	若	$\mid \stackrel{\rightharpoonup}{0}$	\|oio	$\mid \stackrel{\rightharpoonup}{\circ}$	$\stackrel{\circ}{0}$	皆	葆	\|i8	$\stackrel{0}{\circ}$	$\left\lvert\, \begin{aligned} & \mathrm{o} \\ & \hline 0 \end{aligned}\right.$	落	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \hline 0 \end{aligned}\right.$	ö	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\left\lvert\, \begin{aligned} & \stackrel{y}{c} \\ & \stackrel{y y}{c} \\ & \hline \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \stackrel{\circ}{\circ} \\ & \hline 0 \\ & \hline 0 \end{aligned}\right.$	若	落	$\left\lvert\, \begin{aligned} & \overline{0} \\ & 0 \\ & 0 \end{aligned}\right.$	呙	\|e	$\left\lvert\, \begin{aligned} & \stackrel{y}{0} \\ & \stackrel{y y}{c} \end{aligned}\right.$	i	$\left\lvert\, \begin{aligned} & \underset{O}{0} \\ & \text { in } \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \text { N} \\ & \text { Nin } \end{aligned}$	O
	$\left\lvert\, \begin{aligned} & \frac{5}{0} \\ & \stackrel{y}{x} \\ & \stackrel{u}{z} \end{aligned}\right.$	$\frac{\mathrm{x}}{\mathrm{x}}$	$\begin{array}{\|l} \frac{0}{0} \\ \dot{x} \\ \stackrel{y}{z} \end{array}$	$\begin{array}{\|l\|l\|l\|l\|} \stackrel{\rightharpoonup}{x} \\ \text { z } \end{array}$	\|둤	$\stackrel{\stackrel{\rightharpoonup}{0}}{9}$	\|든	$\left\lvert\,\right.$	$\left\lvert\, \begin{aligned} & \frac{N}{0} \\ & \frac{0}{x} \\ & \underset{\sim}{2} \end{aligned}\right.$	N		$\begin{aligned} & \frac{8}{0} \\ & \frac{1}{z} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|} \hline \underset{4}{x} \\ \hline \end{array}$	\|o	\|쓴	$\mid \underset{\substack{x \\ \underset{4}{x} \\ \hline}}{ }$		$\left.\right\|_{0} ^{0}$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \stackrel{y}{z} \end{aligned}\right.$		$\mid \stackrel{\stackrel{\rightharpoonup}{\underset{u}{4}}}{ }$		$\left\lvert\, \begin{aligned} & \text { 这 } \\ & \underset{\sim}{4} \end{aligned}\right.$	\|릈		$\mid \stackrel{\stackrel{\rightharpoonup}{x}}{\stackrel{\rightharpoonup}{x}}$	$\left\lvert\, \begin{array}{\|c} \stackrel{3}{0} \\ \stackrel{x}{x} \\ \underset{\sim}{2} \end{array}\right.$	㷫	\|둔	\|Oㅡㄹ		｜r
$\stackrel{\rightharpoonup}{\circ}$	$\begin{array}{\|} \bar{\circ} \\ \overline{0} \\ \hline \end{array}$	$\stackrel{8}{0}$		害	$\begin{array}{\|l\|l\|} \hline \frac{\pi}{0} \\ 0 \end{array}$	苟	$\left\lvert\, \begin{aligned} & \text { त } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \bar{\circ} \\ & \hline 0 \mathrm{O} \\ & \hline \end{aligned}\right.$	$\stackrel{0}{0}$	产	検	$\left\lvert\, \begin{aligned} & \bar{n} \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \bar{\circ} \\ & \hline \stackrel{\circ}{\circ} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\ddot{0}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}\right.$	\propto	$\begin{aligned} & \overline{\mathrm{m}} \\ & \stackrel{\mathrm{O}}{0} \\ & \mathrm{c} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{g}} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \hline \end{aligned}$		$\begin{aligned} & \bar{\circ} \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{i} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	品	$\begin{aligned} & \overline{\mathrm{y}} \\ & \mathrm{y} \\ & \hline \end{aligned}$	$\text { \| } \begin{gathered} \overline{\mathrm{O}} \\ \mathrm{O} \end{gathered}$	$\begin{aligned} & \overline{\widetilde{y}} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{\mathrm{O}} \\ & \stackrel{y}{\circ} \\ & \hline \end{aligned}$	$\dot{\infty}$	\|cis	్ָ̈	－
	$\left\lvert\, \frac{\overline{0}}{\frac{7}{x}}\right.$	希	$\begin{array}{\|l\|l} \frac{0}{0} \\ \dot{x} \\ \stackrel{u}{z} \\ \hline \end{array}$	$\mid \stackrel{\times}{\underset{z}{z}}$	$\stackrel{\rightharpoonup}{\underline{1}}$		$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{x} \\ & \underset{\sim}{4} \end{aligned}\right.$		$\begin{aligned} & \overline{\mathrm{O}} \\ & \underset{O}{\mathrm{O}} \end{aligned}$	$\begin{array}{\|c} \stackrel{\circ}{0} \\ \frac{1}{4} \\ \underset{Z}{2} \end{array}$			$\begin{aligned} & \sqrt[n]{0} \\ & \frac{0}{0} \\ & \stackrel{y}{0} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \overline{0} \\ & \stackrel{0}{0} \\ & \stackrel{x}{4} \\ & \hline \underset{L}{ } \end{aligned}\right.$			$\begin{aligned} & \bar{Y} \\ & \bar{O} \\ & 0 \end{aligned}$			年	$\stackrel{\rightharpoonup}{\mathrm{J}}$	皆		$\left\lvert\, \begin{array}{\|l\|l\|} \hline \stackrel{0}{0} \\ \stackrel{\rightharpoonup}{x} \\ \underset{\sim}{4} \\ \hline \end{array}\right.$	$\left\lvert\, \begin{aligned} & \overline{\mathrm{y}} \\ & \underset{\sim}{x} \end{aligned}\right.$	$\mid \stackrel{\stackrel{0}{x}}{\stackrel{y}{z}}$	答		O	先		｜r
		N	mix	$\left\lvert\, \begin{aligned} & \mathrm{t} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}\right.$	\|rn	\|o	\|	\|	$\begin{aligned} & \overline{7} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	吡	$\begin{aligned} & \text { m } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	$\underset{\substack{\mathrm{O}}}{\stackrel{\rightharpoonup}{\mathrm{~L}}}$	\|n	$\left\lvert\, \begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{N}{2} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}\right.$		$\begin{aligned} & \overline{7} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \text { N } \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{m} \\ & \stackrel{\rightharpoonup}{0} \\ & \mathrm{o} \end{aligned}$	$\begin{aligned} & 7 \\ & \stackrel{y}{\circ} \\ & 0 \end{aligned}$	"	$\left\lvert\, \begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{0} \\ & \mathbf{0} \end{aligned}\right.$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{F}{\mathrm{I}}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	¢	$\begin{aligned} & \pm \\ & \stackrel{\rightharpoonup}{\circ} \\ & 0 \end{aligned}$	$\begin{array}{\|l\|l} \text { n } \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{array}$	－	N	0

OPTITEST (Software)

The measuring system is equipped with OptiTest (a module of our CIQ quality data managemen software) which allows to prepare a measurement, to control the ATE to automatically acquire all the values of the defined parameters, to evaluate the results, to provide the measurement reports in the desired format and finally to save or export the measured values.
The software has been developed in the Microsoft® ${ }^{\circledR}$ Windows ${ }^{\text {TM }}$ environment and complies with the Windows features.

Creation and administration of test specification

The early creation of "Test Plan" file allows to define:

- the successive measuring sequences (Line test, LF, HF, EMC, ...)
- the appropriated limits and conditions (including complex limit curves)
- the scales (logarithmic or linear)
- the HF measuring method (sweep or frequency table; start/stop frequencies; number of points,...)
- the configuration of reports

The test plan is created only once per cable type and can be saved and re-used accordingly.
Possibility to create an unlimited number of cable specifications and test sequences.
These "test specifications" will be stored with an individual customised name and are easily retrievable.
Most of the limits and formulas recommended by the international standards are already integrated.
Their variables are programmable to enable the preparation of special specifications

Measurement

The operator only needs to connect the cable on the frame, set the right test plan, fulfil the specific data (order number, operator name,...) and start the full automatic measurement.

- Fully automatic calibration management including automated calibration procedure
- Preliminary line test to verify the cable connection (short cut, crossover, ...)
- Switching sequences indicated by LEDs
- In case of problem, the operator can repeat the measurement or continue in accepting the wrong value.

Reporting

Report generation is set in the test plan and is automatically generated.
The results may be displayed, printed, stored as PDF files, exported (e.g. Excel) or sent by email.
Different highly comprehensive reports can be generated containing a limit case compilation with graphics and for each measuring block a separate summary with related graphics.
Filters and search criteria normally generate sample lists which facilitate multiple further actions such as:

- Display and process measured values
- Print reports and labels

Evaluation

All data is available for evaluation at any time. Thus, all test data of a cable can be collectively evaluated and printed. Some examples of how to perform evaluations are:

- Sample list sorted by test order
- Search with pre-defined or customized filters through the data pool
- Generate quality charts (statistics)
- Statistical distribution (Gauss type curve)
- Evolution and parameter survey as function of time
- Measurements repartition in a defined time period to determine the testing load

Data management

Connected to CIQ (AESA quality data management system), all data gathered with OptiTest can be used for further statistical evaluations and combined with other measurements gathered during the complete manufacturing process, from incoming good inspection to the dispatch of the finished product.

Options

1. Network Analyzer

- Agilent type E5080B 4 ports ($9 \mathrm{kHz}-4.5 \mathrm{GHz}$)

Article No: 51.0001.0097.0
 Article No: 51.0001.0060.0

Other types can be proposed upon request. VNA from customer can also be integrated.

2. Coaxial cables measuring option

The option includes the modification of the equipment (N-connectors, switch,...) and the related software module to allow the measurement of coaxial cables with Vega.

$$
\begin{array}{lll}
50 \text { or } 75 \text { ohms } & \text { coaxial option } & \text { Article No: 50.0001.0031.0 } \\
50+75 \text { ohms } & \text { coaxial option } & \text { Article No: 50.0001.0029.0 }
\end{array}
$$

Coaxial accuracy (frequency range will depend on the VNA)	From	To		$\begin{aligned} & 100 \mathrm{kHz} \\ & 100 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 100 \mathrm{MHz} \\ & 500 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 500 \mathrm{MHz} \\ 1 \mathrm{GHz} \end{gathered}$	1 GHz 3 GHz	$\begin{aligned} & 3 \mathrm{GHz} \\ & 6 \mathrm{GHz} \end{aligned}$
S21 transmission (Attenuation, NEXT) corrected at $20^{\circ} \mathrm{C}$	-80	-50	dB	$\pm 1.5 \mathrm{~dB}$	$\pm 1.7 \mathrm{~dB}$	$\pm 1.9 \mathrm{~dB}$	$\pm 2.4 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$
	-50	-25	dB	$\pm 0.5 \mathrm{~dB}$	$\pm 0.6 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 0.9 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$
	-25	-10	dB	$\pm 0.2 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 1.3 \mathrm{~dB}$
	-10	0	dB	$\pm 0.2 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 1.3 \mathrm{~dB}$
Impedance	50	50	Ω	$\pm 0.5 \Omega$	$\pm 0.7 \Omega$	$\pm 1.0 \Omega$	$\pm 1.5 \Omega$	$\pm 4.0 \Omega$
	75	75	Ω	$\pm 0.75 \Omega$	$\pm 1.2 \Omega$	$\pm 1.5 \Omega$	$\pm 2.0 \Omega$	$\pm 6.0 \Omega$

3. LF option for Cobalt 4504

Article No: 50.0001.0061.0

The low frequency parameters measuring technology provides a self-calibration. It is designed to test up to 4 pairs or 2 quads. Different measuring frequencies are integrated in the capacitance bridge. They can be used depending on the length of the cable

Description	Designation for pairs	Designation for quads	Accuracy	Scale
Conductor resistance	Ra, Rb	$\begin{aligned} & \text { Ra, Rb } \\ & \mathrm{Rc}, \mathrm{Rd} \end{aligned}$	$\pm 0,1 \%+10 \mathrm{~m} \Omega$	0-19,999 k
Loop resistance	R	R1, R2		
Resistance unbalance	DR	$\begin{gathered} \hline \text { DR1, DR2, } \\ \text { DR3 } \end{gathered}$	Computed	\%, Ω
Capacitance	C	C1, C2, C3	$\begin{aligned} & \pm 0,25 \% \pm 10 \mathrm{pF} \text { at } 800 \mathrm{~Hz} \\ & \pm 0,25 \% \pm 10 \mathrm{pF} \text { at } 125 \mathrm{~Hz} \\ & \pm 0,25 \% \pm 50 \mathrm{pF} \text { at } 12,5 \mathrm{~Hz} \\ & \hline \end{aligned}$	0-2'000nF
Capacitance unbalance	K	K1-K12	$\begin{aligned} & \pm 1 \% \pm 6 \mathrm{pF} \text { at } 800 \mathrm{~Hz} \\ & \pm 1 \% \pm 3 \mathrm{pF} \text { at } 125 \mathrm{~Hz} \\ & \pm 1 \% \pm 30 \mathrm{pF} \text { at } 12,5 \mathrm{~Hz} \end{aligned}$	
Capacitance unbalance to ground	Ei, Ea, E	Ei1-Ei3 Ea1-Ea3 E1-E3		

Calculated parameters (from 100 Hz to 10 kHz)

Attenuation
Characteristic Impedance

Statistical parameters

Maximum and minimum measured values Upper quality factor
Absolute minimum measured valueLower quality factor
Average value RC product
Quadratic average Standard deviation RC
Standard deviation Variance

4. Switch for options

The option includes the necessary hardware to connect specific options to the system (e.g. EMC,...).

- Switch + $\mathbf{5 0}$ ohms N -connector for options

Article No: 50.0001.0032.0
5. EMC Parameters (TI, AS, AC)*

To perform EMC measurements (Transfer Impedance, Coupling Attenuation, Screening Attenuation) with the tri-axial method, following accessories are required

- One hardware package to prepare the sample and take care for the impedance adaptation
- One software package (specific measurement module)

These accessories allow measuring the transfer impedance, the screening attenuation and coupling attenuation according to IEC 62153-4-9 when knowing the impedance of the internal coaxial cable created with the sample under test.

* this option requires a system with a 50 ohms switch. If the system is not equipped with it, it must be ordered separately.

Pictures next page.

- Transfer Impedance Kit, \varnothing 2.3-9.8 mm
- Transfer Impedance Kit, $\varnothing 6$ - 22 mm

6. Option Alien Crosstalk AXT for ATE up to Cat. 6A (semi-automatic, incl. software) $^{\text {(sen }}$

AESA has developed a software package along with a test procedure that allows the swapping of the different cables on a 4-pair connecting frame. It allows making all necessary measurements in a welldefined order. The software will then compute the measured crosstalk and show the results as specified in the standards.
This option is optimized for 4-pair unscreened cables (U/UTP) up to 500 MHz .

7. Option Alien Crosstalk AXT for ATE up to Cat. 8 (semi-automatic, incl. software)

AESA has developed a software package along with a test procedure that allows the swapping of the different cables on a 4-pair connecting frame. It allows making all necessary measurements in a well-defined order. The software will then compute the measured crosstalk and show the results as specified in the standards.
This option is optimized for screened cables (X/FTP, F/UTP) up to 2000 MHz and unscreened cables (U/UTP) up to 500 MHz .

8. Option for connector RJ45

Patch cord for RJ45 connectors: easy and direct adaptation to the Cobalt frame.
Using a simple interface and introducing a deembedding software correction, it doesn't need frequent and time-consuming calibration routines. It can provide not only the standard parameters as Next and RL, but also other cable parameters for development and further analysis

Article No: 50.0001.0070.0

9. Set of ISO 17025 certified LF standards type AESA 9000

Article No: 45.9000.0001.0
This set of "Low Frequency" standards, certified ISO 17025, allows the periodic calibration, thus proving the accuracy of the complete measurement system. The kit is composed of:

- Standard type 9001
- Standard type 9002

C1,2
19,20 nF
$\pm 0,1 \% \pm 30 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$

- Standard type 9003
- Standard type 9004
- Standard type 9005

192,0 nF K1, K2, K3 16000 pF
E1, E2, E3 12000 pF
$\pm 0,1 \% \pm 30 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$
$\pm 0,1 \% \pm 30 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$
$\pm 0,1 \% \pm 30 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$
$\pm 0,1 \% \pm 30 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$
RA, RD $\quad 192 \Omega \quad \pm 0,01 \% \pm 2 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$
$\mathrm{RB}, \mathrm{RC} \quad 1920 \Omega \quad \pm 0,01 \% \pm 2 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$

10. Set of ISO 17025 certifies HF calibration standards type AESA 9800

This set of "coaxial" primary standards, certified ISO 17025, allows the periodic calibration, thus proving the accuracy of the complete measurement system (Vector Network Analyzer + RF multiplexer + connecting frame).

This set of "coaxial" primary standards should not be mixed up with the "symmetrical" zero correction kit, delivered with the ATE, which is used to carry out the periodical zero correction files of the equipment, required to measure LAN cables.

The set of certified HF standards is composed of:

- 2 attenuation references type 9801

$$
-3 \mathrm{~dB}
$$

-2 attenuation references type $9802-6 \mathrm{~dB}$
-2 attenuation references type $9803-10 \mathrm{~dB}$
-2 attenuation references type 9804 -20dB
-2 attenuation references type $9805-30 \mathrm{~dB}$
$-2 \times 50 \Omega$ terminations

- 2 special connectors for the terminations
- 4 HF connecting cables for the attenuation
- 1 set of miscellaneous HF material

ISO 17025 ACCREDITED

11. Movable Trolley

Article No: 51.0190.0001.0

For convenience or operational reasons, it is possible to add a professional movable trolley to the system. In such a case, all tester components are integrated in the trolley, including the computer system and the printer.

12. Spare parts

AESA recommends following set of spare parts for a secured operation for two years:

Cobalt Type	HF measurement only (Mini kit)	Including optional LF measurement (Full kit)
1 CKE measuring bridge type KM		\checkmark
1 R measuring bridge type RM		\checkmark
1 LF relay matrix board type AZU		\checkmark
1 CPU board	\checkmark	\checkmark
2 test heads (4 if two different connecting frames)	\checkmark	\checkmark
2 HF relays (3 if two different connecting frames)	\checkmark	\checkmark
1 control boards set	\checkmark	\checkmark
1 set of HF cable	\checkmark	\checkmark
1 set of different mechanical and electronic hardware	\checkmark	\checkmark
Article No	$\checkmark .0900 .0003 .0$	50.0900 .0002 .0

